مهم­ترین آشکارساز جدید، دوربین سی­سی­دی است. این آشکارساز از یک سطحِ متشکل از دیودهای سیلیکونی حساس به نور ساخته شده است. هر عنصر تصویر یا پیکسل، یک دیود است. این دیودها در یک آرایه­ی مستطیلی کنار هم چیده شده­اند.

فوتون برخوردی به آشکارساز، یک الکترون آزاد می­کند که در پیکسل به دام می­افتد. پس از اتمام نوردهی، با اِعمال اختلاف پتانسیل­های متغیر، بارهای جمع­آوری شده به­صورت ستون به ستون به یک میانگیر[1] خروجی منتقل می­شوند. در میانگیر، بارهای الکتریکی به­صورت پیکسل به پیکسل وارد یک مبدل آنالوگ به دیجیتال شده، داده­ی دیجیتال خروجی به رایانه ارسال می­گردد. با خواندن تصویر، آشکارساز پاک می­شود. اگر نوردهی خیلی کوتاه باشد، قسمت عمده­ای از زمان رصد به مدت زمان لازم برای خواندن آشکارساز اختصاص می­یابد.

دوربین سی­سی­دی تقریباً خطی است؛ یعنی تعداد الکترون­ها متناسب است با تعداد فوتون­ها. از این رو، تنظیم داده­ها بسیار ساده­تر از صفحه­ی عکاسی می­باشد.

به دلیل نوفه‌ی حرارتی در دوربین، حتی در تاریکی مطلق نیز یک جریان در خروجی وجود دارد که به جریان تاریک معروف است. برای کاهش نوفه، باید دوربین را خنک کرد. معمولاً دوربین‌های سی‌سی‌دی نجومی را با نیتروژن مایع خنک نگه می‌دارند. بدین ترتیب بیشتر جریان تاریک حذف می‌شود. با وجود این، با سرد شدن آشکارساز، حساسیت آن نیز کاهش می‌یابد؛ بنابراین خیلی سرد هم خوب نیست. دما را باید ثابت نگه داشت تا داده‌ی به دست آمده یک‌دست باشد. آماتورها نیز می‌توانند از دوربین‌های سی‌سی‌دی با قیمت مناسب استفاده کنند. این دوربینها به صورت الکتریکی خنک می‌شوند. بسیاری از این دوربینها را می‌توان برای کارهای علمی نیز به کار برد، البته اگر دقت بالایی مد نظر نباشد. جریان تاریک را می‌توان به سادگی با بستن نوربند (شاتر) دوربین اندازه گرفت. اگر این جریان را از تصویر مشاهده شده کم کنیم، تعداد واقعی الکترون‌ها ناشی از نور تابشی به‌دست می‌آید.

 

[1] - Buffer

 

کتاب مبانی ستاره‌شناسی ترجمه کتاب Fundamental Astronomy صفحه ۷۶ و ۷۷